image frame
正在载入网站运行时长

EthanYan's Blog

机器学习算法之欠拟合和过拟合

Editor:闫玉良

引言:机器学习的基本问题是利用模型对数据进行拟合,学习的目的并非是对有限训练集进行正确预测,而是对未曾在训练集合出现的样本能够正确预测。模型对训练集数据的误差称为经验误差,对测试集数据的误差称为泛化误差。模型对训练集以外样本的预测能力就称为模型的泛化能力,追求这种泛化能力始终是机器学习的目标。过拟合和欠拟合是导致模型泛化能力不高的两种常见原因,都是模型学习能力与数据复杂度之间失配的结果。

阅读全文...
  • 页面访问量: 独立访客访问数:
  • 更多精彩文章请关注微信公众号『全栈技术精选』,id 为『Pythonnote』

请我喝杯咖啡吧~

支付宝
微信